skip to main content


Search for: All records

Creators/Authors contains: "Hieronymus, Tobin L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 8, 2025
  2. Primates' near exclusive use of diagonal sequence gaits has been hypothesized to enhance stability on arboreal substrates. To assess how primate gait kinematics vary in complex arboreal environments, we filmed eight species of free-ranging primates (Ateles, Lagothrix, Alouatta, Pithecia, Callicebus, Saimiri, Saguinus, and Cebuella) at the Tiputini Biodiversity Station, Ecuador, and quantified the diameter and orientation of locomotor substrates using remote sensors (n = 858 strides). Five of the species used primarily diagonal sequence, diagonal couplet (DSDC) gaits. Callicebus frequently used lateral sequence gaits (i.e., ~50% of strides). Saguinus and Cebuella most frequently used asymmetrical gaits. We examined the effects of substrate diameter and orientation on duty factor and interlimb phasing, controlling for speed via ANCOVA. Ateles increased limb phase on inclines (p=0.04), Lagothrix had greater duty factors on inclines (p=0.002), Callicebus exhibited greater duty factors (p=0.04) and lower limb phase values on declines (p=0.001), and both Saimiri and Saguinus displayed an inverse relationship between limb phase and substrate diameter (p=0.05, p=0.03, respectively). This study confirms the ubiquity of diagonal sequence gaits in free-ranging primates and at least partially supports predicted biomechanical adjustments to promote stability including: increased duty factor on nonhorizontal substrates, increased limb phase on inclines, and decreased limb phase on declines. Other species-specific kinematic adjustments to substrate variation are likely related to body size and ecological variation but require further investigation. 
    more » « less
  3. Abstract Objectives

    Primate diagonal sequence (DS) gaits are often argued to be an adaptation for moving and foraging in the fine‐branch niche; however, existing data have come predominantly from laboratory studies that are limited in taxonomic breadth and fail to account for the structural and ecological variation of natural substrates. We test the extent to which substrate diameter and orientation influence gait sequence type and limb phase in free‐ranging primates, as well as how phylogenetic relatedness might condition response patterns.

    Materials and methods

    We filmed quadrupedal locomotion in 11 platyrrhine species at field sites in Ecuador and Costa Rica and measured the diameter and orientation of locomotor substrates using remote sensors. We quantified limb phase values and classified strides by gait sequence type (N= 988 strides).

    Results

    Our results show that most of the species in our sample consistently used DS gaits, regardless of substrate diameter or orientation; however, all taxa also used asymmetrical and/or lateral sequence gaits. By incorporating phylogenetic eigenvectors into our models, we found significant differences in gait sequence patterns and limb phase values among the major platyrrhine clades, suggesting that phylogeny may be a better predictor of gait than substrate diameter or orientation.

    Discussion

    Our field data generally corroborate locomotor patterns from laboratory studies but capture additional aspects of gait variability and flexibility in response to the complexity of natural environments. Overall, our results suggest that DS gaits are not exclusively tailored to narrow or oblique substrates but are used on arboreal substrates in general.

     
    more » « less
  4. ABSTRACT

    Crocodylians evolved some of the most characteristic skulls of the animal kingdom with specializations for semiaquatic and ambush lifestyles, resulting in a feeding apparatus capable of tolerating high biomechanical loads and bite forces and a head with a derived sense of trigeminal‐nerve‐mediated touch. The mandibular symphysis accommodates these specializations being both at the end of a biomechanical lever and an antenna for sensation. Little is known about the anatomy of the crocodylian mandibular symphysis, hampering our understanding of form, function, and evolution of the joint in extant and extinct lineages. We explore mandibular symphysis anatomy of an ontogenetic series ofAlligator mississippiensisusing imaging, histology, and whole mount methods. Complex sutural ligaments emanating about a midline‐fused Meckel's cartilage bridge the symphysis. These tissues organize during days 37–42 ofin ovodevelopment. However, interdigitations do not manifest until after hatching. These soft tissues leave a hub and spoke‐like bony morphology of the symphyseal plate, which never fuses. Interdigitation morphology varies within the symphysis suggesting differential loading about the joint. Neurovascular canals extend throughout the mandibles to alveoli, integument, and bone adjacent to the symphysis. These features suggest theAlligatormandibular symphysis offers compliance in an otherwise rigid skull. We hypothesize a fused Meckel's cartilage offers stiffness in hatchling mandibles prior to the development of organized sutural ligaments and mineralized bone while offering a scaffold for somatic growth. The porosity of the dentaries due to neurovascular tissues likely allows transmission of sensory and proprioceptive information from the surroundings and the loaded symphysis. Anat Rec, 302:1696–1708, 2019. © 2019 American Association for Anatomy

     
    more » « less
  5. Nearly all living artiodactyls (even-toed ungulates) possess a derived cranial arterial pattern that is highly distinctive from most other mammals. Foremost among a suite of atypical arterial configurations is the functional and anatomical replacement of the internal carotid artery with an extensive, subdural arterial meshwork called the carotid rete. This interdigitating network branches from the maxillary artery and is housed within the cavernous venous sinus. As the cavernous sinus receives cooled blood draining from the nasal mucosa, heat rapidly dissipates across the high surface area of the rete to be carried away from the brain by the venous system. This combination yields one of the most effective mechanisms of selective brain cooling. Although arterial development begins from the same embryonic scaffolding typical of mammals, possession of a rete is typically accompanied by obliteration of the internal carotid artery. Among taxa with available ontogenetic data, the point at which the internal carotid obliterates is variable throughout development. In small-bodied artiodactyls, the internal carotid typically obliterates prior to parturition, but in larger species, the vessel may remain patent for several years. In this study, we use digital anatomical data collection methods to describe the cranial arterial patterns for a growth series of giraffe (Giraffa camelopardalis), from parturition to senescence. Giraffes, in particular, have unique cardiovascular demands and adaptations owing to their exceptional body form and may not adhere to previously documented stages of cranial arterial development. We find the carotid arterial system to be conserved between developmental stages and that obliteration of the giraffe internal carotid artery occurs prior to parturition.

     
    more » « less